On the extreme inequalities of infinite group problems

نویسندگان

  • Santanu S. Dey
  • Jean-Philippe P. Richard
  • Yanjun Li
  • Lisa A. Miller
چکیده

Infinite group relaxations of integer programs (IP) were introduced by Gomory and Johnson [10] to generate cutting planes for general IPs. These valid inequalities correspond to real-valued functions defined over an appropriate infinite group. Among all the valid inequalities of the infinite group relaxation, extreme inequalities are most important since they are the strongest cutting planes that can be obtained within the group-theoretic framework. However, very few properties of extreme inequalities of infinite group relaxations are known. In particular, it is not known if all extreme inequalities are continuous and what their relations are to extreme inequalities of finite group problems. In this paper, we describe new properties of extreme functions of infinite group problems. In particular, we study the behavior of the pointwise limit of a converging sequence of extreme functions as well as the relations between extreme functions of finite and infinite group problems. Using these results, we prove for the first time that a large class of discontinuous functions is extreme for infinite group problems. This class of extreme functions is the generalization of the functions given by Letchford and Lodi [15], Dash and S. S. Dey School of Industrial Engineering, Purdue University. Supported by NSF Grant DMI-03-48611. E-mail: [email protected] J.-P. P. Richard School of Industrial Engineering, Purdue University. Supported by NSF Grant DMI-03-48611. E-mail: [email protected] Y. Li Krannert School of Management, Purdue University. E-mail: [email protected] L. A. Miller Department of Mechanical Engineering, University of Minnesota. E-mail: [email protected] 2 Santanu S. Dey et al. Günlük [3,4] and Richard, Li and Miller [17]. We also present several other new classes of discontinuous extreme functions. Surprisingly, we prove that the functions defining extreme inequalities for infinite group relaxations of mixed integer programs are continuous.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extreme inequalities for infinite group problems

In this paper we derive new properties of extreme inequalities for infinite group problems. We develop tools to prove that given valid inequalities for the infinite group problem are extreme. These results show that integer infinite group problems have discontinuous extreme inequalities. These inequalities are strong when compared to related classes of continuous extreme inequalities. This give...

متن کامل

New Inequalities for Finite and Infinite Group Problems from Approximate Lifting

In this paper, we derive new families of piecewise linear facet-defining inequalities for the finite group problem and extreme inequalities for the infinite group problem using approximate lifting. The new valid inequalities for the finite group problem are twoand three-slope facet-defining inequalities as well as the first family of four-slope facet-defining inequalities. The new valid inequal...

متن کامل

n-step MIR Functions: Facets for Finite and Infinite Group Problems

The n-step mixed integer rounding (MIR) functions are used to generate n-step MIR inequalities for (mixed) integer programming problems (Kianfar and Fathi, 2006). We show that these functions are sources for generating extreme valid inequalities (facets) for group problems. We first prove the n-step MIR function, for any positive integer n, generates two-slope facets for the infinite group prob...

متن کامل

Constrained Infinite Group Relaxations of MIPs

Recently minimal and extreme inequalities for continuous group relaxations of general mixed integer sets have been characterized. In this paper, we consider a stronger relaxation of general mixed integer sets by allowing constraints, such as bounds, on the free integer variables in the continuous group relaxation. We generalize a number of results for the continuous infinite group relaxation to...

متن کامل

Composite lifting of group inequalities and an application to two-row mixing inequalities

Given a valid inequality for the mixed integer infinite group relaxation, a composite lifting approach that combines sequential lifting and use of a fill-in function is proposed that can be used to strengthen this inequality. Properties of this composite lifting such as bounds on the solution of the lifting problem and some necessary conditions for the lifted inequality to be minimal for the mi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Program.

دوره 121  شماره 

صفحات  -

تاریخ انتشار 2010